APPLICATIONS NOTE

Vol. 25 no. 8 2009, pages 1084-1085
doi:10.10983/bioinformatics/btp112

Sequence analysis

MmKESA: enhanced suffix array construction tool

Robert Homann'-2* David Fleer?, Robert Giegerich? and Marc Rehmsmeier® T

TInternational NRW Graduate School in Bioinformatics and Genome Research, Center for Biotechnology (CeBiTec),
Bielefeld University, 33594 Bielefeld, 2Technische Fakultét, Bielefeld University, Postfach 100 131, 33501, Bielefeld,
Germany and SGMI - Gregor Mendel Institute of Molecular Plant Biology GmbH, Dr. Bohr-Gasse 3, 1030 Vienna,

Austria

Received on January 21, 2009; revised on February 19, 2009; accepted on February 20, 2009

Advance Access publication February 26, 2009
Associate Editor: Limsoon Wong

ABSTRACT

Summary: We introduce the tool mkESA, an open source program
for constructing enhanced suffix arrays (ESAs), striving for low
memory consumption, yet high practical speed. mkESA is a user-
friendly program written in portable C99, based on a parallelized
version of the Deep-Shallow suffix array construction algorithm,
which is known for its high speed and small memory usage. The tool
handles large FASTA files with multiple sequences, and computes
suffix arrays and various additional tables, such as the LCP table
(longest common prefix) or the inverse suffix array, from given
sequence data.

Availability: The source code of mkESA is freely available under
the terms of the GNU General Public License (GPL) version 2 at
http://bibiserv.techfak.uni-bielefeld.de/mkesa/.

Contact: rhomann@techfak.uni-bielefeld.de

1 INTRODUCTION

The program mkESA is a software tool for constructing enhanced
suffix arrays (ESAs) from biological sequence data. The ESA is an
index data structure for textual data, introduced in Abouelhoda et al.
(2004) as an extension of the well-known suffix array (Manber and
Myers, 1993). The ESA is equivalent to the suffix tree, another very
important, but more space consuming full-text index data structure
(Gusfield, 1997). The major advantages of ESAs over suffix trees
are their lower space overhead, improved locality of reference and
simple storing to files.

A suffix array for text T of length n is a table of size n+1 that lists
the start positions of the suffixes of 7' in lexicographic order. Using
a suffix array, exact string queries can be answered in O(mlogn)
time, where m is the length of the query, instead of O(m+n) time
without a suffix array. ESAs are composed of a suffix array and
additional tables that can be used to improve query performance [e.g.
O(m+logn) time using the LCP table, called Hgt array in Manber
and Myers (1993)], or enabling efficient implementation of more
advanced queries (e.g. finding maximum unique matches). Thus,
ESAs are fundamental technology in sequence analysis.

Many interesting problems on sequences from the field of
computational biology can be solved efficiently by transforming

*To whom correspondence should be addressed.
Present address: GMI - Gregor Mendel Institute of Molecular Plant Biology
GmbH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.

sequence data into (enhanced) suffix arrays [see, for instance,
(Beckstette et al., 2006; De Bona et al., 2008; Hohl et al., 2002;
Krumsiek et al., 2007; Rahmann, 2003)]. Linear-time algorithms for
suffix array construction have been proposed as well as algorithms
that are fast in practice and/or tuned for space efficiency, rendering
use of suffix arrays feasible for large datasets; see Puglisi er al.
(2007) for a comprehensive overview. In addition, by the results
of Abouelhoda et al. (2004), any program using suffix trees can
be transformed so to employ ESAs instead and benefit from the
advantages offered by that data structure.

Despite the great interest in suffix arrays in the literature, only few
actual programs for ESA construction are available. Most existing
programs are useful for mere suffix array construction, and do
not address specificities of computational biology such as handling
multiple sequences and very large datasets. A notable exception is
the widely used mkvtree program (http://www.vmatch.de/). mkvtree
can read common file formats such as FASTA and keeps sequences
separated from their descriptions. An ESA generated by mkvtree
may contain multiple sequences, stored so that a match can easily
be mapped to its corresponding sequence. The program is available
free of charge as part of the Vmatch package, but, unfortunately,
in binary form and for non-commercial purposes only. This implies
that software relying on mkvtree cannot be distributed easily since
the terms of the Vmatch license agreement restrict the legal use
of mkvtree. Software that requires using mkvtree also requires all
users to obtain the Vmarch package, if available for their platform
of choice, and have them sign a license agreement, too.

We have implemented the alternative open source software tool
mkESA, using the Deep-Shallow algorithm (Manzini and Ferragina,
2004) for in-memory suffix array construction instead of multikey
quicksort as used by mkvtree. Thus, mkESA is efficient even for
highly repetitive sequence data, and is fast as long as all data can be
held in main memory. As further improvement, our implementation
of Deep-Shallow can use multiple CPUs for increased speed.

2 IMPLEMENTATION

With mkvtree being the most widely spread program for ESA
construction, we tried to pick up all of the important ideas
implemented in mkvtree and improve upon its weaknesses. mkESA
has been designed so to produce output as compatible with mkvtree
as possible. The files generated by mkESA are in fact the same as
those made by mkvtree, meaning that data produced by mkESA can
be processed by programs that expect mkvtree-generated ESAs.

© 2009 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://bibiserv.techfak.uni-bielefeld.de/mkesa/
http://www.vmatch.de/
http://creativecommons.org/licenses/

mkESA

Table 1. Datasets used for performance measurements

Table 2. Results of performance measurements

Name Description Size o

chrl Chromosome 1 human genome 219 (219)MB 4
fmdv Foot/mouth disease virus genomes 65 (64) MB 4
spro UniprotKB/Swiss-Prot rel. 56.4 181 (140) MB 20
trem UniprotKB/TrEMBL rel. 39.4 2836 (2110) MB 20
25 25th Fibonacci string 73 (73)kB 2
£30 30th Fibonacci string 813 (813)kB 2

Sizes are given as file sizes, followed by sizes of files with FASTA headers removed
in parentheses. Alphabet sizes are given as o. We included Fibonacci strings since
these are hard on many suffix tree and suffix array construction algorithms due to
their high repetitiveness. They impose the worst case for the number of nodes in a
suffix tree, 2n, and thus, e.g. trigger the worst case running time of 0(n?) of the
WOTD suffix tree construction algorithm (Giegerich et al., 2003). Dataset ‘fmdv’ is
a non-artificial example for highly repetitive sequence data, with similar impact on
performance (Table 2).

mkESA employs the ‘Deep-Shallow’ algorithm of Manzini and
Ferragina (2004) for suffix array construction. This algorithm
belongs to the family of ‘lightweight’ suffix sorting algorithms,
covering algorithms that use only very small additional space besides
the suffix array and the input text, i.e. only O((5+¢€)n) bytes
space for a text of length n, and using 32 bit integers for the
suffix array. Our version of Deep-Shallow is multithreaded, i.e.
the computational work for suffix sorting can be distributed over
multiple CPUs or CPU cores. Since Deep-Shallow is not useful for
building LCP tables as by-product of suffix sorting (as is the case
with simple multikey quicksort), we use the space-efficient, linear-
time algorithm of Manzini (2004) to construct LCP tables from suffix
arrays. Moreover, mkESA can generate the inverse suffix array and
the skip table (Beckstette et al., 2006). It is worth noting that mkESA
can incrementally add additional tables when they are needed.

3 RUNTIME BENCHMARKS

We compared the performance of mkESA with other programs
for suffix array construction, namely mkvtree, mksary 1.2.0
(http://sary.sourceforge.net/, included for its ability to run
multithreaded), and Manzini’s implementation of Deep-Shallow ds.
We measured the time and space consumption for building suffix
arrays from the datasets in Table 1, using memtime version 1.3.
mkESA and mkvtree processed FASTA files, the other programs
processed the bare sequence data with FASTA headers removed so
that all programs had comparable workloads. Only ‘parallel mkESA’
and ‘parallel mksary’ (Table 2) made explicit use of multiple CPU
cores. Measurements were taken on a Sun Fire X4450 (4 Intel
Xeon CPUs at 2.93 GHz, 16 cores, 96 GB RAM) running Solaris
10. The programs were compiled with gcc 4.1.1 using flags -m64
-03 -fomit-frame-pointer. Each experiment was repeated
four times in a row; the best (shortest elapsed time) of the results
are displayed in Table 2. Our results show comparable memory
requirements for all tested programs, while mkESA is usually the
fastest among them, even when using only one CPU.

4 CONCLUSION

We presented mkESA, a portable, lightweight, multithreaded and
fast program for constructing enhanced suffix arrays. We carefully

Name mkESA Parallel mkESA mkvtree

sec MB sec MB sec MB
chrl 91 (2.6) 1085 66 (2.6) 1093 138 (2.2) 1148
fmdv 89 (0.9) 353 66 (0.9) 356 1797 (1.1) 338
spro 47 (1.9) 785 25(1.9) 785 76 (2.2) 813
trem 2273 (545) 21461 1500 (553) 21462 2956 (530) 21827
25 0.1 (0.0) 0.1 0.1 (0.0) 0.1 7.3 (0.0) 1.4
30 1.1 (0.0) 5.1 1.1 (0.0) 53 895(0.0) 5.4
Name mksary Parallel mksary ds

sec MB sec MB sec MB

chrl 224 (11) 1097 252 (28) 1097 102 (3.8) 1098

fmdv - - - - 99 (12) 323
spro 161 (7.7) 705 115 (23) 707 63 (2.5) 705
225 7.5 (0.0) 32 63 (0.0) 34 0100 01
£30 - - - - 09(0.0) 5.1

The ‘sec’ columns show the total time consumed in seconds (wall time clock), followed
by the time attributed to operating system activities in parentheses. The ‘MB’ columns
show main memory consumption in megabytes [resident set size (RSS)]. Parallel
versions were allowed to use up to 16 threads. Some programs crashed for various
datasets, in which cases results are not shown. For the same reason there is no row for
‘trem’ in the lower part. All values were rounded for readability.

tested the software on a variety of UNIX-like operating systems and
hardware architectures, including recent versions of Linux, Solaris,
Mac OS X, FreeBSD, OpenBSD and NetBSD. Its ability to generate
output compatible with mkvtree makes mkESA a convenient open
source drop-in replacement for earlier programs.

Conflict of Interest: none declared.

REFERENCES

Abouelhoda,M. et al. (2004) Replacing suffix trees with enhanced suffix arrays.
J. Discrete Algorithms, 2, 53-86.

Beckstette,M. et al. (2006) Fast index based algorithms and software for matching
position specific scoring matrices. BMC Bioinformatics, 7.

De BonaF. et al. (2008) Optimal spliced alignments of short sequence reads.
Bioinformatics, 24, 1174-i180.

Giegerich,R. er al. (2003) Efficient implementation of lazy suffix trees. Softw. Pract.
Exp., 33, 1035-1049.

Gusfield,D. (1997) Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, NY, USA.

HohLM. er al. (2002) Efficient multiple genome alignment. Bioinformatics, 18,
S312-S320.

Krumsiek,J. et al. (2007) Gepard: a rapid and sensitive tool for creating dotplots on
genome scale. Bioinformatics, 23, 1026-1028.

Manber,U. and Myers,E. (1993) Suffix Arrays: a new method for on-line string searches.
SIAM J. Comput., 22, 935-948.

Manzini,G. (2004) Two space saving tricks for linear time LCP array computation. In
Hagerup,T. and Katajainen,J. eds, Proceedings of 9th Scandinavian Workshop on
Algorithm Theory (SWAT '04), Vol. 3111 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany, pp. 372-383.

Manzini,G. and Ferragina,P. (2004) Engineering a lightweight suffix array construction
algorithm. Algorithmica, 40, 33-50.

Puglisi,S.J. et al. (2007) A taxonomy of suffix array construction algorithms. ACM
Comput. Surv., 39, 4.

Rahmann,S. (2003) Fast large scale oligonucleotide selection using the longest common
factor approach. J. Bioinform. Comput. Biol., 1, 343-361.

1085

http://sary.sourceforge.net/

